

Welcome to intake_parquet’s documentation!

Contents:

	Quickstart
	Installation

	Usage

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake_parquet provides quick and easy access to tabular data stored in
the Apache Parquet [https://parquet.apache.org/] binary, columnar format.

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c conda-forge intake-parquet

Usage

Ad-hoc

After installation, the function intake.open_parquet will become available. This
can be used to open any parquet data-set. For example, assuming the part 'mydata.parquet'
contains parquet data in one or more files, the following will load it into an in-memory pandas
dataframe:

import intake
source = intake.open_parquet('mydata.parquet')
dataframe = source.read()

Arguments to open_parquet:

	urlpath : the location of the data. This can be a single file, a list of specific files,

or a directory containing parquet files (normally containing a _metadata index file). The
URLs can be local files or, if using a protocol specifier such as 's3://', a remote file
location.

	storage_options : other parameters that are to be passed to the file-system

implementation, in the case that a remote file-system is referenced in urlpath. For
specifics, see the dask documentation [http://dask.pydata.org/en/latest/remote-data-services.html].

	columns : Of the possible set of columns stored in the data, only those specified

will be read; other data are not accessed at all. If not specified, loads all columns.

	index : Set the given column as the index of the resultant data-frame. If not given,

a default index may be set, if the information is available in the metadata of the data-set;
or no index if not. Can be set to False to prevent setting an index.

	filters : A list of filters to consider excluding the loading of some of the partitions

of the data. For example, if there is a column called 'value', a filter like
('value', '>', 5), then partitions which contain no values matching the filter will not
be loaded, but partitions containing at least one value which passes the filter will be
loaded.

	engine : ‘fastparquet’ or ‘pyarrow’. Which backend to read with.

	gather_statistics : bool or None (default). Gather the statistics for
each dataset partition. By default, this will only be done if the _metadata
file is available. Otherwise, statistics will only be gathered if True,
because the footer of every file will be parsed (which is very slow on some
systems).

	engine : ‘fastparquet’ or ‘pyarrow’. Which backend to read with.

	gather_statistics : bool or None (default). Gather the statistics for
each dataset partition. By default, this will only be done if the _metadata
file is available. Otherwise, statistics will only be gathered if True,
because the footer of every file will be parsed (which is very slow on some
systems).

	see dd.read_parquet() for the other named parameters that can be passed through.

A source so defined will provide the usual methods such as discover and read_partition.

Creating Catalog Entries

To include in a catalog, entries must specify driver: parquet.
The further arguments are exactly the same
as for open_parquet. Commonly, the choice of which columns to load can be left to the
end-user, by including it as a parameter.

Using a Catalog

Assuming a catalog file called cat.yaml, containing a parquet source pdata, one could
load it into a dataframe as follows:

import intake
cat = intake.open_catalog('cat.yaml')
df = cat.pdata.read()

Parquet data-sets are inherently partitioned, and the partitions can be accessed in random order
or iterated over.

Parquet data also plays well with Dask parallel processing, so the method to_dask() can
be considered. Importantly, sub-selecting from the columns of the Dask data-frame will prevent
unnecessary loading of the non-required columns even in the case where columns selection has
not been included in the catalog entry user parameters.

Caching

Parquet data-sets can be singular, lists of files, or whole directory trees. The first two can
be cached using the standard “files” type cache, but the latter requires “dir” type cachimg to
capture the whole structure. An example may look like:

cache:
 - type: dir
 regex: '{{ CATALOG_DIR }}/split'
 argkey: urlpath
 depth: 4

Where the extra depth parameter indicates the number of directory levels that should be
scanned.

API Reference

	intake_parquet.source.ParquetSource(*args, …)

	Source to load parquet datasets.

	
class intake_parquet.source.ParquetSource(*args, **kwargs)[source]

	Source to load parquet datasets.

Produces a dataframe.

A parquet dataset may be a single file, a set of files in a single
directory or a nested set of directories containing data-files.

The implementation uses either fastparquet or pyarrow, select with the
engine= kwarg.

Keyword parameters accepted by this Source:

	
	columns: list of str or None
	column names to load. If None, loads all

	
	index: str or None
	column to make into the index of the dataframe. If None, may be
inferred from the saved matadata in certain cases.

	
	filters: list of tuples
	row-group level filtering; a tuple like ('x', '>', 1) would mean
that if a row-group has a maximum value less than 1 for the column
x, then it will be skipped. Row-level filtering is not
performed.

	
	engine: ‘fastparquet’ or ‘pyarrow’
	Which backend to read with.

	
	gather_statisticsbool or None (default).
	Gather the statistics for each dataset partition. By default,
this will only be done if the _metadata file is available. Otherwise,
statistics will only be gathered if True, because the footer of
every file will be parsed (which is very slow on some systems).

	see dd.read_parquet() for the other named parameters that can be passed through.

	Attributes

	
	cache_dirs
	

	classname
	

	datashape
	

	description
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Close open resources corresponding to this data source.

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Create single pandas dataframe from the whole data-set

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a part of the data corresponding to i-th partition.

	to_dask()

	Return a dask container for this data source

	to_spark()

	Produce Spark DataFrame equivalent

	yaml([with_plugin])

	Return YAML representation of this data-source

	describe

	

	get_persisted

	

	set_cache_dir

	

	
read()[source]

	Create single pandas dataframe from the whole data-set

	
to_dask()[source]

	Return a dask container for this data source

	
to_spark()[source]

	Produce Spark DataFrame equivalent

This will ignore all arguments except the urlpath, which will be
directly interpreted by Spark. If you need to configure the storage,
that must be done on the spark side.

This method requires intake-spark. See its documentation for how to
set up a spark Session.

Index

 P
 | R
 | T

P

 	
 	ParquetSource (class in intake_parquet.source)

R

 	
 	read() (intake_parquet.source.ParquetSource method)

T

 	
 	to_dask() (intake_parquet.source.ParquetSource method)

 	
 	to_spark() (intake_parquet.source.ParquetSource method)

 All modules for which code is available

	intake_parquet.source

 Source code for intake_parquet.source

from intake.source import base
from . import __version__

[docs]class ParquetSource(base.DataSource):
 """
 Source to load parquet datasets.

 Produces a dataframe.

 A parquet dataset may be a single file, a set of files in a single
 directory or a nested set of directories containing data-files.

 The implementation uses either fastparquet or pyarrow, select with the
 `engine=` kwarg.

 Keyword parameters accepted by this Source:

 - columns: list of str or None
 column names to load. If None, loads all

 - index: str or None
 column to make into the index of the dataframe. If None, may be
 inferred from the saved matadata in certain cases.

 - filters: list of tuples
 row-group level filtering; a tuple like ``('x', '>', 1)`` would mean
 that if a row-group has a maximum value less than 1 for the column
 ``x``, then it will be skipped. Row-level filtering is *not*
 performed.

 - engine: 'fastparquet' or 'pyarrow'
 Which backend to read with.

 - gather_statistics : bool or None (default).
 Gather the statistics for each dataset partition. By default,
 this will only be done if the _metadata file is available. Otherwise,
 statistics will only be gathered if True, because the footer of
 every file will be parsed (which is very slow on some systems).

 - see dd.read_parquet() for the other named parameters that can be passed through.
 """
 container = 'dataframe'
 name = 'parquet'
 version = __version__
 partition_access = True

 def __init__(self, urlpath, metadata=None,
 storage_options=None, **parquet_kwargs):
 self._urlpath = urlpath
 self._storage_options = storage_options or {}
 self._kwargs = parquet_kwargs or {}
 self._df = None

 super(ParquetSource, self).__init__(metadata=metadata)

 def _get_schema(self):
 if self._df is None:
 self._df = self._to_dask()
 dtypes = {k: str(v) for k, v in self._df._meta.dtypes.items()}
 self._schema = base.Schema(datashape=None,
 dtype=dtypes,
 shape=(None, len(self._df.columns)),
 npartitions=self._df.npartitions,
 extra_metadata={})
 return self._schema

 def _get_partition(self, i):
 self._get_schema()
 return self._df.get_partition(i).compute()

[docs] def read(self):
 """
 Create single pandas dataframe from the whole data-set
 """
 self._load_metadata()
 return self._df.compute()

[docs] def to_spark(self):
 """Produce Spark DataFrame equivalent

 This will ignore all arguments except the urlpath, which will be
 directly interpreted by Spark. If you need to configure the storage,
 that must be done on the spark side.

 This method requires intake-spark. See its documentation for how to
 set up a spark Session.
 """
 from intake_spark.base import SparkHolder
 args = [
 ['read'],
 ['parquet', [self._urlpath]]
]
 sh = SparkHolder(True, args, {})
 return sh.setup()

[docs] def to_dask(self):
 self._load_metadata()
 return self._df

 def _to_dask(self):
 """
 Create a lazy dask-dataframe from the parquet data
 """
 import dask.dataframe as dd
 urlpath = self._get_cache(self._urlpath)[0]
 self._df = dd.read_parquet(urlpath,
 storage_options=self._storage_options, **self._kwargs)
 self._load_metadata()
 return self._df

 def _close(self):
 self._df = None

 nav.xhtml

 Table of Contents

 		
 Welcome to intake_parquet’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Ad-hoc

 		
 Creating Catalog Entries

 		
 Using a Catalog

 		
 Caching

 		
 API Reference

_static/plus.png

_static/file.png

_static/minus.png

